
Environments for Creativity – A Lab for Making Things

Ellen Yi-Luen Do
Georgia Institute of Technology
Atlanta GA 30332-0155 USA

ellendo@cc.gatech.edu

Mark D Gross
Carnegie Mellon University
Pittsburgh, PA 15213 USA

mdgross@cmu.edu

ABSTRACT
We have, with our students, engaged in cross-disciplinary
research in design. We describe parameters and principles
that we have found helpful in organizing and conducting this
kind of work. A variety of projects that have been developed
in our group illustrate these parameters and principles. Our
group focuses on making and we have come to see creativity
as grounded in the ability to make things.

Author Keywords
Design studio, play instinct, objects to think with, rapid
prototyping

ACM Classification Keywords
H5.m Information interfaces and presentation: Miscellaneous
(Collaboration)

INTRODUCTION
Everyone can be creative, because everyone has the ability to
create or make things.
Current interest in creativity stems at least in part from the
realization that the traditional models of professional
education may fall short in the changing economic context.
Simply producing the most technically skilled mechanical or
software engineers or architects no longer seems a sufficient
strategy. A new kind of comprehensive education seems
called for. Richard Florida in The Rise of the Creative Class
[9], talks about "the three Ts" - talent, technology and
tolerance. He observes that the trend of the economy and
recipe for successful business is not big manufacturing, but
instead a new type of knowledge-based, creative companies.
These companies attract and retain smart people that bring
“talents” to the table, invest in innovative “technology,” and
welcome new people, ideas, and cultural diversity
(“tolerance”). What are the ingredients of academic
environments that can attract and nurture this kind of
creativity? We have been working for a number of years at
various universities to create this kind of environment. Here

we reflect on this experience and some of the challenges,
factors, tradeoffs that we have encountered.

Making Things
In keeping with our own disciplinary background — we
were educated as architects and now teach in schools of
architecture (at least notionally a creative field) — we begin
with making things. Consider the Oxford English
Dictionary’s definitions of two words:
To create:
1. Said of the divine agent: To bring into being, cause to

exist; esp. to produce where nothing was before, ‘to
form out of nothing’

2. To make, form, constitute, or bring into legal existence
(an institution, condition, action, mental product, or
form, not existing before).

To make:
1. To produce (a material thing) by combination of parts,

or by giving a certain form to a portion of matter, to
manufacture; to construct, assemble, frame, fashion.

2. Of God (also of Nature personified, etc.): to create (a
material or spiritual object).

 “Create” is a word of Latin derivation, and “Make” is a
northern one, but both mean much the same thing. Create has
stronger divine connotations, whereas make is humbler1.
Creativity, in other words, is simply the propensity or ability
to make things. The things may be physical, such as jewelry
or bicycles, or they may be things that have no material
presence, such as songs, poems, or software. These domains
seem radically diverse, but based on our experience in
making different kinds of things we have come to believe
that there are strong commonalities between being creative in
different domains. However, it is difficult to see these
commonalities unless one has experience with making in at
least two different domains.
We see creativity not as an innate ability, but as a capacity
that can be cultivated through experience making things.
Making can be learned, largely through practice, which is the

1 Use Visual Wordnet to compare “create” and “make” for

an interesting perspective on their noble and humble
connotations:
http://kylescholz.com/projects/wordnet/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
C&C’07, June 13–15, 2007, Washington, DC, USA.
Copyright 2007 ACM 978-1-59593-712-4/07/0006...$5.00.

27

dominant mode in schools of art and design. In our design
computing studio-laboratories we have emphasized a strategy
of exploration by making things.

Materials and processes
If, as we argue, creativity is bound up in making things, then
we must look at how people learn to make things, and how
they learn to make things well. A look at a design school
curriculum, the Bauhaus foundation courses for an historical
example, or any contemporary school of architecture or
industrial design, reveals an emphasis on materials and
process.
A potter must know clays and glazes and the various
processes by which clays and glazes are prepared, formed,
and fired. A clothing designer must know fabrics and
fasteners, and the various processes for sizing, cutting, and
sewing.
The need to know materials and processes holds not only for
traditional domains of making. The same applies to software
and software-intensive systems. A programmer must know
hardware and software and the processes by which code can
be designed, written, debugged, and maintained. Knowledge
of materials and processes — obtained through direct
experience — is fundamental to the ability to make things in
any domain.

Space and the Studio-Laboratory
We have worked primarily, though not exclusively, with
students who are studying or have studied architectural
design: undergraduates, professional master students, and
PhD students in design computing. These students (and
indeed all students in design disciplines) are accustomed to
the studio model of learning and practice, described by Don
Schön in The Design Studio [39]. (Schön’s work on what he
aptly named “the reflective practitioner” expands on his
observations of architectural education in a Mellon
Foundation study [38].) The design studio and the research
laboratory both depend on a common space in which work
takes place and is visible for informal discussion and open
critique. A shared space for work is, we believe, a basic
ingredient of a creative community. Although this
observation may seem obvious to those familiar with this
pattern, it is not a universal model in the university. For
example, the lab model is virtually unknown in the
humanities [15].
Below, we review some projects that we have worked on
over the past few years. We do this to reflect on the creative
communities we have fostered at universities where we have
worked. We have never explicitly described our research
practice as a curiosity-based designer-as-maker approach, but
we engage problem solving and problem seeking to
encourage people to see no boundaries between fields. We
encourage exploration by constructing (interface,
interactions, software, and hardware) as a process that
creates, in Seymour Papert’s phrase, “objects to think with”
[32]. This approach is embedded deeply in the design studio
culture. We set up an environment to encourage and nurture

creative mindsets and approaches. Specifically, we
encourage the process of generating ideas and building
prototypes through incremental refinement.
All design involves a developmental process. The design
ideas and eventually the artifacts that stand for the ideas (the
prototypes) move from one developmental stage to the next.
The process is driven by the conditions of the environment.
Usually, a project remains in a particular stage until some
other conditions happen to push us to move it to the next
stage. At other times we don’t seem to be moving to the next
stage, but later we realize that we were in an incubation stage
that absorbs and responds to the changes and integrates them.
So what are the “driving forces” that we engage in our
creative laboratory practice?

The Creative Team versus the Leonardo Model
One successful model for creative communities is to foster
team-building among people who have different abilities, and
some have studied how such team-building can happen [29].
For example, an artist and a programmer might work
together on the design of a game. The artist is not expected to
be a programmer, and the programmer is not expected to
function as an artist. Rather, each member of the “creative
team” functions as an expert in his or her domain; and the
team learns to function together effectively by dividing
responsibilities according to expertise.
Rather we favor what one might call the Leonardo model.
We encourage individuals to transgress traditional
disciplinary boundaries and learn to function in whatever
fields of knowledge they need to accomplish their goals. In
this model an artist who has an idea for a game would simply
build the game, learning (or having already learned) to
program along the way.
True, most people find mastering even one discipline to be a
serious challenge, and only an occasional outlier will master
two or more disciplines. Not to understate the work involved,
but with motivation and access to knowledge, designers can
acquire skills to function effectively in two or more quite
different fields. Indeed, for some, knowledge of designing
within one discipline can support rapid and sophisticated
acquisition of knowledge in another.
If working across disciplinary boundaries holds creative
riches, it is also certainly not without its challenges. In an
article on the emerging field of computational biology,
Junhyong Kim [23] makes trenchant observations on the
nature and challenges of interdisciplinary research
collaboration:

“While combining the knowledge of two different
fields can be difficult, we can overcome such
problems if we work hard and do our homework.
There is absolutely no reason why an expert in
biological sciences should not also be deeply
knowledgeable in computer science, mathematics,
and statistics…..
Specifically, when two experts get together, they

28

expect each other to stay within their own domains
and communicate solely through some narrowly
prescribed interface.
 … To make interdisciplinary research successful,
we must jettison this idea of the expert. All
knowledge is equal. Indeed, if we really knew which
knowledge is important and which is not, we could
all use it with shared certainty. Growth of
knowledge, whether personal or fieldwide, is
haphazard and full of windings and intricate
turnings.”

Everyone cannot know everything; tradeoffs must be
made. Yet there is value in learning how “other”
disciplines work, not just from the perspective of how to
collaborate with others, but to understand and see
designing from within more than one domain.

Hill-finding and Hill-climbing
We aim to build prototypes that extend the dimensions of a
design space, rather than optimize within existing design
space dimensions. This makes it difficult to make useful
comparisons with other designs that serve the same function
or perform a similar task. On the other hand, without
evaluation it is difficult to judge the quality of the work that
has been done.
One of our students, Gabe Johnson, put it like this;

One perspective is that when we build a novel tool,
we will have some idea about how it might be used
and how it could help, but not well enough to form a
detailed evaluation plan before building it. We have
to build it before we know which questions are
appropriate to ask and evaluate. This isn't hill
climbing, this is hill finding.
An opposing perspective holds that we shouldn't
build tools without having a prescient knowledge of
how that tool fits into the landscape of existing tools,
and exactly what specific benefit we believe we can
derive from that tool. This is the standard scientific
approach of hypothesis - experiment - analysis
(repeat). In other words, this is hill climbing.

PROJECTS
We organize the projects below into three categories to
discuss the process and dimensions of the projects in our
creative communities. All are about “making things”,
building computationally enhanced artifacts that are objects
to think with, to play with, to contemplate ideas about design.
Three patterns of promoting creative engagements emerge:
(1) owning the problem, (2) design and the play instinct, and
(3) building tools to make things.

Related Work (Projects)
We are well aware of much related work for the various
student projects. For example, systems similar to Gesture
Modeling include Surface Drawing [37] and Pinch Glove
[26]. Related to the Immersive Redliner, early work on

annotation in virtual reality is reported in [3]. Telepresence
has been extensively explored by Tang and Minneman [44]
and others [45]. Tangible music toys are numerous, for
example Sony’s Block Jam; see also [16] and the work of
Eisenberg, Resnick and colleagues [8, 34]. Like Easigami,
Ju’s Origami Desk [19] supported origami learning with a
physical interface. Related tangible storytelling work include
work by Druin et al. [31]; there are indeed conferences
devoted to interactive storytelling technology [11]. Pen based
sketching systems to create 3D models, similar in intent to
the Furniture Factory include work of Lipson and colleagues
[30]; see also [6, 13, 18, 21, 25]. Tangible building blocks
projects related to roBlocks include the early work of Aish
[1] and more recently that of Anderson and Marks et al. at
MERL and Watanabe’s work on ActiveCubes [2, 46].
Owning the Problem or Deciding What to Design
In a traditional architectural design studio, work begins with
a clearly defined problem statement, or “program” (e.g., a
community library, a house for a working couple, or a train
station). This way of working is appropriate where the goal is
to teach and learn specific skills that every architect must
know, such as arranging functions in a floor plan or deciding
on a structural system to support the building. Nor do we
mean to belittle the importance of learning to design things
for others. The drawback—from the more general
perspective of learning to make things— is that being given a
ready-made problem avoids the framing question of
“deciding what to design” [41]. Importantly, also many find
it more difficult to take ownership of a problem that someone
else has prepared.
Therefore we encourage our students to define their own
problem statements—figuring out the “wants”. For example,
one might be frustrated with existing technology or practice
and have a want for something better. Or, these wants can
come from personal experience, the desire to live a smarter,
more efficient, or happier life. Having wants ensures that
there is a desire or passion for something to happen. This
motivates people to engage in just-in-time learning to
achieve their project goals. The process begins with the
egocentric (“I want … ”) and moves toward to a more shared
vision of the benefits of a project (“we get …”). As
Buchanan [5] points out, the old design education focuses on
“teaching the materials, tools, and techniques of design as the
primary subject matter,” the new course “focuses on projects
and problems that are situated within the experience and
motivation of students.” He argues that- “having a reason to
design gives focus and purpose to student development.
When a purpose exists, we find it easier then to introduce
materials, tools, and techniques.”
Our “own the problem” approach might seem unorthodox—
at least among colleagues in Human-Computer Interaction
and Design—in that we do not begin with a user-centered
approach, conducting ethnographic studies, cultural probes,
or other means to identify and understand the dimensions of
a problem to be solved. Rather, we draw on personal

29

experience and personal needs as a primary source for
creative exploration into the design space.
Many innovations come about because the inventor solves a
problem for him or herself. Stallman, for example, built
emacs because he wanted a better text editor [43]. He knew
the problem well — it was his problem —so he did not need
to conduct surveys or observations to understand the client or
the context.
Paul Graham puts it like this:

You're most likely to get good design if the intended
users include the designer himself. When you design
something for a group that doesn't include you, it
tends to be for people you consider to be less
sophisticated than you, not more sophisticated.
That's a problem, because looking down on the user,
however benevolently, seems inevitably to corrupt the
designer. I suspect that very few housing projects in
the US were designed by architects who expected to
live in them. [12]

Graham is certainly right about the architects.

Gesture Modeling
Our Gesture Modeling project [22] began with a frustration
with using WIMP interfaces to create architectural form. (“I
want to gesture and shape spaces"). Ariel Kemp, an
architecture graduate student with a bachelor degree in
computer science, wanted instead to use his hands to
generate three-dimensional form, to design with computers
as freely as one could in making sculpture out of clay. Ariel
had previously written some image processing code that he
used in the Gesture Modeling project to recognize different
hand gestures, and connected this code to a 3-D geometry
engine and linked the gestures to different form-making and
editing operations.

Figure 1. Deforming a mesh model with a hand gesture.

Immersive Redliner
The Immersive Redliner project [20] came from the need to
collaborate with other stakeholders on design artifacts. (I
need a way for my clients to give feedback). Thomas Jung,
an architecture graduate student, understood that need. He
felt that designing in the medium of CAD tended to isolate,
rather than bring together, the various stakeholders, and he
wanted to support a conversation among stakeholders about
the artifact being designed. In order to realize this goal he

learned to program in Java and mastered the intricacies of the
Java3D graphics environment. The Redliner software offered
stakeholders a desktop virtual reality model in which they
could browse a 3D model on the Web and post annotations
about particular features on objects in the design.

Figure 2. Redliner Annotations by stakeholders in an interior
design

Telepresence Tables
Telepresence Tables are an instance of calm technology that
provides one person an ambient awareness of others while
protecting privacy. (“I want to stay connected with my
friends and family while maintaining my privacy.”)
Originally a project in a “Home of the Future” class we
taught, the Telepresence Tables are two small tables outfitted
with electronics so that shadow patterns made on one table
appear in colored light on the other. Each table has an 8x8
array of light sensors and two colors of LEDs that project
upward to make patterns on a frosted plastic surface. A
microcontroller in each table collects the light sensor values,
echoes them locally by lighting yellow LEDs, and sends the
data to the other table, which displays the remote shadow
pattern by lighting the red LEDs. People find the light
patterns beautiful and the experience engaging.

Figure 3. Each Telepresence Table translates shadow
patterns into light and transmits them to the other table.

The Telepresence Tables were built over two months by a
team of four: Ken Camarata and Mike Weller, two PhD
students in computational design, Kursat Ozenc, a PhD

30

student in interaction design, and Bridget Lewis, an
undergraduate physics major. The team started by
brainstorming around the idea of ambient awareness with
privacy, and moved rapidly to tangible interaction embedded
in furniture. The team developed several alternatives quickly,
and selected the grid of photosensors and LEDs. Over the
course of the first few weeks the team together worked out
the electronics and software design, learning basic circuit
design and fabrication as they went. A shared workspace and
a (persistent) whiteboard supported their design discussions
and served as informal communication between team
members. The design underwent continual refinement as the
team built small prototypes to test various aspects. The team
made up for their collective lack of experience in analog
electronics by opportunistically taking advantage of
resources. For example, rather than send boards out to be
fabricated (which no one on the team knew how to do) they
opted for using a computer-numerically controlled mill to
mill circuit paths in copper plated boards.

Tinkering, design, and the play instinct
The second pattern in our projects is the importance of play.
The late American graphic designer Paul Rand described
designing as a kind of play within given or self-imposed
constraints [33]. Play – an exploration of materials and
processes — is what distinguishes routine acts of making,
that is to say production, from more creative acts of making
that may result in innovative ideas.
Papert [32] used the French word bricolage, or what
computer scientists and artificial intelligence researchers
called “hacking” goes to the heart of what creative people do,
and people who aspire to being creative must practice.
This sort of creative play is encouraged in schools of design
(which include architecture, industrial, communication and
interaction design) and the arts (including music, painting,
sculpture, and drama). Students learn to make things by
making things.
Despite some advantages, hacking, tinkering, and playful
exploration are often disparaged. These activities are seen as
not sufficiently goal-oriented: A good engineer, it is said,
begins with a clearly articulated problem statement, and then
applies reliable methods to reach a solution. A student who
spends time playing around with things is wasting time that
could be more profitably spent applying known methods to
the problem at hand. And inevitably there will be failures —
as actually building a prototype reveals unanticipated
behaviors that undermine a previously plausible design idea.
Getting the plan right in the first place would avoid wasted
time and costly mistakes.
The difficulty with this position is, of course, that creative
work, particularly design work, seldom begins with a clearly
stated problem. Rather, as many have pointed out [35, 39,
42], design is as much concerned with identifying and
expressing a problem as it is finding solutions. Adages such
as “Defining the problem is the problem” and “The problem

and solution co-evolve” exemplify this well-known
characteristic of designing.

Bach Blocks – playing with music
Shaun Moon’s Bach Blocks are a set of colored blocks, a
camera, and some software that reads the arrangement of
blocks and plays a tune. Shaun, a graduate student with a
background in architectural design, wanted to play with
music, and wanted in particular to build a toy that could
engage his young children with music.
Colors represent pitches and the positions of the blocks
determine the sequence of play. Thus, Bach Blocks is at once
an instrument for making music and a notation to compose it.
Ordinarily the software plays from left to right (and blocks
arranged vertically play harmonies), but Bach Blocks
software can also be set to play the tune in any direction.

Figure 4 Bach Blocks: making and playing music with
colored blocks

Easigami – playing with origami
Playing with origami, children learn geometry and spatial
reasoning skills. However, children often find it difficult to
interpret diagrams in a book into origami action. The
traditional way of teaching origami discourages children
from creating original paper models. It cannot reveal the rich
content in the transformation between a 3D model and its 2D
crease pattern. Easigami is a tangible user interface that
addresses these issues. It uses computer interaction to clarify
origami actions and to encourage origami exploration
through 2D-3D transformation.

Figure 5. Easigami senses a user’s folding pattern.

Easigami’s physical interface is a paper-like triangle tile toy
composed of flat triangle pieces and electrically enhanced

31

hinges. The hinges join plastic triangles to form a flat sheet
with a crease pattern. Each hinge can provide folding
instructions by illuminating LEDs to indicate which crease(s)
are active as well as the direction to fold. Each hinge senses
the relationship between the two adjacent triangles it
connects, and sends the angular information to a desktop
computer. Users can follow instructional signals and fold the
Easigami interface along pre-folded creases. A real-time
computer graphic model of the physical triangles is displayed
on screen along with the corresponding 2D crease pattern.
Easigami was built by Yingdan Huang, a PhD student who
had an undergraduate degree in architecture and had taken
advanced courses in programming and computer graphics.
Easigami was her first tangible media project, and she had no
experience with wiring up analog electronics or
microcontroller programming. However, she was able to
quickly produce alternative physical designs for embedding
electronic components in a physical model, and develop a
hierarchy browser that enables Easigami users to see where
the current state of the folded sheet is in the space of possible
origami designs. She was also able to quickly build an Open-
GL 3-D viewer that dynamically displays the model as the
user folds it, although she was stymied for some time by the
realization that accurately modeling paper folding, notably
the transient states in which paper is flexed into complex
curved surfaces, is a non-trivial problem. With some effort
we were able to convince Yingdan that an approximate
simulation would be an adequate representation.

Storytelling Cubes – building animations tangibly
Storytelling Cubes are a tangible device for young children
to create animated stories on a computer screen. Each cube
contains an orientation sensor (three mercury switches) and a
wireless transmitter that tells the host computer which side of
each cube is facing up. The faces of cubes depict various
characters, scenes, and actions in an animated cartoon.
Children use the Storytelling Cubes to illustrate their spoken
stories in a create-your-own-adventure fashion. Tony Sheng-
Kai Tang, an architecture PhD student, interfaced the
Storytelling Cubes with the Alice graphical programming
environment developed by Randy Pausch’s group at CMU to
enable children to use the Storytelling Cubes to generate
animated cartoon stories.

Figure 6. Making animations with Storytelling Cubes

Building Tools to Make Things
The third pattern in our projects is a tool-building approach.
We are less interested in making particular designs for a
particular client or user, than in developing ways of working
— methods and tools— that can open up new design spaces.
We mention briefly two projects that illustrate that approach:
Furniture Factory and roBlocks.

Furniture Factory -- Sketch to fabrication
The Furniture Factory program helps designers make
physical prototypes using rapid prototyping and
manufacturing machines. It provides a sketch-based design
interface that a designer can use to draw furniture in 3-D.
The program then displays the model in an isometric viewing
window where the designer can view it and edit it. It then
decomposes the 3-D model into flat panels and displays them
in the parts window. Furniture Factory adds joints where one
panel connects to another according to connection
conditions. These added joints enable designers to construct
the physical model easily and quickly. The program
generates HPGL code to cut the furniture parts on a laser
cutter.

Figure 7. Sketch to Fabrication with the Furniture Factory

Furniture Factory is designed specifically to produce a
simple subset of the universe of things that can be made from
flat material. We are working on a generalization of the
program that will allow a designer to sketch and manufacture
a wider variety of things, based on a larger language of form
that includes folding, laminating, assembling, and cutting flat
materials.

roBlocks – a Robot Construction Kit
The roBlocks construction kit [40], built by Eric
Schweikardt, a PhD student with an undergraduate major in
architecture and a minor in computer science, is a set of 40
mm plastic cubes that snap together using small neodymium
magnets in their faces. Each block contains a microprocessor
and custom circuit boards that are glued with conductive
epoxy to the face magnets. Power, as well as data, is
transmitted from one block to the next through the magnets
and a small spring pins also mounted on each face. Some
blocks are input blocks: they have light, sound, touch, or
other sensors. Others output: they have motors, lights, or
speakers. Still others are logic or arithmetic blocks that
combine signals from the sensor blocks.

32

The idea of roBlocks is that designers who have no previous
experience with electronics, mechanical design, or
programming can assemble the components of a robot by
making a block construction. The configuration itself also
programs the robot’s behavior, so (conceptually), a light
sensor block snapped to a motor block will be a robot that
moves toward light; adding a NOT block between them
produces a robot that avoids light.

Figure 8. roBlocks construction kit for modular robotics

DISCUSSION
For various reasons the kind of environment we foster—an
interdisciplinary, no-boundaries, technically sophisticated
studio-laboratory—is still unusual in the university. Certainly
we are not alone: Pelle Ehn articulates a similar vision for a
Digital Bauhaus at Malmö University [7]; Stanford’s “d-
school”, the ID-StudioLab at Delft, the MIT Media Lab, and
others are ventures in the same vein. Within the design
disciplines, and especially industrial and interaction design
there is a growing interest in hybrid models of education [24,
28, 36]. Still we find that the model runs against the grain of
the university, which tends to reward focus within, rather
than across, disciplines.
We recognize the irony in our emphasis on making as a
means to creativity just as Western economies are less and
less about making things. Can we learn creativity through
making, yet apply it to other (non-making) domains?

Education of Designers vs. that of Engineers
Architects and designers are educated in a quite different
fashion than scientists and engineers. Architects in particular
are integrators and therefore negotiators among a set of
diverse other experts. Like designers in other disciplines,
architects are taught to keep options open, explore parallel
alternatives, celebrate ambiguity. Engineers tend to be more
goal-oriented and stay within their field of expertise and treat
ambiguity as something to be eliminated.
Thus we find that it is easier for design students to learn
technical skills (programming, electronics) they need to carry
out projects in design computing than it is to teach
engineering and computer science students to work in ill-
defined situations.
Engineering and computer science students tend to be less
well prepared for open-ended investigation than those who
have studied design. Engineering and computer science
students with whom we have worked are happiest when we

present them with a specification of work to be
accomplished. An open-ended brief tends to make them
uncomfortable—they do not know where to begin or how to
proceed. Once we give them a clear objective they can apply
the skills that they have acquired to attain it. Design students,
in contrast, even when given a clear specification, will ignore
it and do something else!
Although it is possible that becoming expert in technical
domains is simply easier than learning to design, we suppose
that other factors are responsible for this phenomenon. One is
cultural arrogance: due to a perceived ‘pecking order’ in the
university, computer science and engineering students do not
recognize that there is an important skill that they do not
know. Indeed, their education is intended to prepare them to
walk up to any new problem and apply their bag of tricks to
it.
In our experience a computer science student or an
engineering student is more likely to jump from an initial
statement of a problem to propose a method of solving it, and
then immediately pursue that approach without considering
alternatives. Generating and comparing alternatives is an
activity that is drummed into designers throughout their
education.
There is also the matter of being able to accomplish
something. It is usually possible for a student of computer
science or engineering who knows how to write code to
make something—however poorly designed or inelegant—
without having first learned the skills of designing. On the
other hand, a design student who sets out to make an artifact
that has software or hardware must — perforce — learn
some technical skills.
Of course, there are problems going the other way as well.
Not every designer finds computation a natural medium.
Students from a design background are sometimes
overwhelmed by the amount of technical detail that they
must master in order to do anything interesting. Those who
start to learn to program by taking courses in the computer
science department are often bored by the examples used in
problem sets (which have no relationship to anything they
might be interested in) and on the other hand surprised by the
precision that is demanded to make a working piece of
software. Other students view programming as a way to get
something done — “by any means necessary,” and failing to
recognize the power of good design in software, produce
horrible kludges that work (perhaps) for a key example or
two but in the end limit any further exploration that can be
done with the prototype.

Designing and Programming
If creativity is about making things, and making things is
about design, what is the place of programming in all this?
Many who have worked both as a programmer and in some
other domain of design recognize powerful parallels.
Consider the words of master programmer Dick Gabriel in
“the Poetry of Programming.” In 2004 Gabriel received the

33

AAAI/ACM Allen Newell Award “for innovations not only
on fundamental issues in programming languages and
software design but also on the interaction between computer
science and other disciplines, notably architecture and
poetry.” In an interview titled “The Poetry of Programming”,
Gabriel said:

Writing code certainly feels very similar to
writing poetry. When I'm writing poetry, it feels
like the center of my thinking is in a particular
place, and when I'm writing code the center of
my thinking feels in the same kind of place. It's
the same kind of concentration. So, I'm thinking
up possibilities, I'm thinking about, well, so how
do I reinvent the code, gee, you know, what's the
simplest way to do this. [10]

Or Paul Graham again: “Hacking and painting have a lot in
common. In fact, of all the different types of people I've
known, hackers and painters are among the most alike. What
hackers and painters have in common is that they're both
makers. Along with composers, architects, and writers, what
hackers and painters are trying to do is make good
things.”[12]

de.sign = pro.gram
Martin Brynskov at the Center for Interactive Spaces at the
University of Aarhus [4] pointed out that the words design
and program are remarkably close in their Greek and Latin
roots. According to the Oxford English Dictionary the word
“design” is made from the prefix “de-” (meaning out) and the
root “sign” (meaning mark) that is, to mark out. Likewise,
the word “program” is made from the prefix “pro-“ (meaning
forward or out), and ‘gram” (meaning writing). That is, both
design and program mean to mark out or make an explicit
representation.

Emphasis on Prototypes
We emphasize the value of building working prototypes of
ideas—quickly and focusing on the parts of an idea that are
interesting or that seem worth exploring. In traditional design
education, prototypes are physical models that illustrate the
form, and perhaps the materials, of the design to be made. As
computation is added to the mix, it becomes more difficult
for traditionally trained designers to make working
prototypes that illustrate not only the physical and material
characteristics of designs but also their functional behavior.
Software environments like Flash are frequently used to
mock up interaction, but Flash is a poor language to build or
even model more sophisticated computational behavior. As
designers grapple with making things that have both physical
and computational characteristics, the need becomes
apparent for prototyping tools that can capture and convey
not only the superficial aspects of a design, but also carry the
more fundamental ones. Work on toolkits and design
environments for physically embedded computation—as in
[14, 17, 27] can make this kind of work far more accessible.

The New Makers
If as Richard Florida and others argue, creativity is crucial in
the new economy, then perhaps we can foster creativity by
putting making back into education. There is nothing new
about that idea, but for a variety of reasons, some outlined in
Dick Buchanan’s “Design and the New Learning” [5]
learning to make things has become conspicuously absent in
most courses of higher education. One might expect schools
of engineering to teach students to make things, but
engineering curricula are strong on teaching analysis and
principles and light on the actual practice of making.
Certainly, making things is still taught in two places in the
university: schools of design and the arts, and departments of
computer science. Surprisingly, as the field of computer
science matures, the skills of making software are being
systematically displaced by more analytic skills. In short, as
it matures as a discipline, computer science seems to be
moving away from teaching design, just as other engineering
disciplines such as mechanical or civil engineering did in
their earlier days.
Now is an interesting moment. Things have changed, and the
ways of making things have changed too. Almost everything
in our world is the product of design. Increasingly designing
is mediated by computational processes. Increasingly the
artifacts that we encounter —our shoes, our houses, even our
parks, are embedded with microcontrollers, sensors, and
electronics. Designers of the future—the New Makers—will
need to be fluent with the materials and processes of
computation, in addition to the materials and processes of
other domains.
We believe that powerful insights are available to those
designers—who come initially from whatever discipline—
who master the art and craft of making things in more than
one domain. These insights may eventually further the
development of what Simon termed a “Science of Design”
[42]. Meanwhile, we hold that creativity is rooted in the
experience of making things.

ACKNOWLEDGMENTS
We appreciate the work of our anonymous reviewers in
suggesting revisions for this paper. This research was
supported in part by the National Science Foundation under
Grant ITR-0326054 and the Pennsylvania Infrastructure
Technology Alliance. The views and findings contained in
this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES
1. Aish, R. 3D Input for CAAD Systems. Computer-Aided

Design, 11 (2). 66-70.
2. Anderson, D., Frankel, J., Marks, J., Leigh, D., Ryall,

K., Sullivan, E., Yedidia, J,. Building Virtual Structures
with Physical Blocks. in UIST 1999, ACM, 1999, 71-72.

34

3. Bolter, J.H., L.F.; Meyer, T.; Nichols, A. Integrating
perceptual and symbolic information in VR. Computer
Graphics and Applications, IEEE, 15 (4). 8 - 11.

4. Brynskov, M. pro.gram = de.sign, Personal
Communication, Pittsburgh, 2006.

5. Buchanan, R. Design Research and the New Learning.
Design Issues, 17 (4). 3-23.

6. Davis, R. Sketch Understanding in design: Overview of
Work at the MIT AI lab. in Davis, R., Landay, J. and
Stahovich, T.F. eds. Sketch Understanding, Papers from
the 2002 AAAI Symposium, American Association for
Artificial Intelligence (AAAI), Menlo Park, CA, 2002,
24-31.

7. Ehn, P. A manifesto for a Digital Bauhaus. Digital
Creativity, 9 (4). 207-217.

8. Eisenberg, M., Eisenberg, A., Gross, M.,
Kaowthumrong, K., Lee, N. and Lovet, W.
Computationally-Enhanced Construction Kits for
Children: Prototype and Principles. in Proc. Int’l Conf.
Learning Sciences, Seattle, WA, 2002, 79-85.

9. Florida, R. The Rise of the Creative Class: And How It's
Transforming Work, Leisure, Community and Everyday
Life. Basic Books, New York, 2003.

10. Gabriel, R. The Poetry of Programming, SUN
Microsystems, 2002 (accessed Oct 16, 2006).
http://java.sun.com/features/2002/11/gabriel_qa.html

11. Göbel, S., Spierling, U. and Hoffmann, A. (eds.).
Technologies for Interactive Digital Storytelling and
Entertainment: Second International Conference,
TIDSE 2004 Proceedings Springer (Lecture Notes in
Computer Science), Darmstadt, Germany, 2004.

12. Graham, P. Hackers and Painters. O'Reilly, Sebastopol,
CA, 2004.

13. Gross, M.D. and Do, E.Y.-L. Drawing on the Back of an
Envelope: a framework for interacting with application
programs by freehand drawing. Computers and
Graphics, 24 (6). 835-849.

14. Hartmann, B., Klemmer, S.R., Bernstein, M., Abdulla,
L., Burr, B., Robinson-Mosher, A. and Gee, J.
Reflective physical prototyping through integrated
design, test, and analysis. in Proceedings of the 19th
annual ACM symposium on User Interface Software and
Technology, ACM Press, Montreux, Switzerland, 2006,
299-308.

15. Hiatt, G. We Need Humanities Labs Inside Higher
Education, 2005, (accessed Oct 26, 2005).
http://www.insidehighered.com/views/2005/10/26/hiatt

16. Hornecker, E. Tangible Interaction Wiki - Music
Applications, 2007 (accessed Jan 2007).
http://www.media.tuwien.ac.at/e.hornecker/Tangibles.ht
ml#Music_Applications

17. Hudson, S.E. and Mankoff, J. Rapid construction of
functioning physical interfaces from cardboard,
thumbtacks, tin foil and masking tape. in Proceedings of
the 19th annual ACM symposium on User interface
software and technology, ACM Press, Montreux,
Switzerland, 2006, 289-298.

18. Igarashi, T., Matsuoka, S. and Tanaka, H. Teddy: A
Sketching Interface for 3D Freeform Design. in
Proceedings SIGGRAPH 1999 Annual Conference on
Computer Graphics, ACM, 1999, 409-416.

19. Ju, W., Bonanni, L., Fletcher, R., Hurwit, R., Judd, T.,
Post, R., Matthew Reynolds and Yoon, J. Origami Desk
– Integrating Technological Innovation and Human-
Centric Design. in Proceedings Conference on
Designing Interactive Systems (DIS), 2001, 399 – 405.

20. Jung, T., Do, E.Y.-L. and Gross, M.D. Sketching
Annotations in 3D on the Web. in ACM Conference on
Human Factors (SIGCHI), ACM Press, Minneapolis,
2002, 618-619.

21. Kara, L.B. and Stahovich, T.F. Pens & sketching:
Hierarchical parsing and recognition of hand-sketched
diagrams. in Proceedings of the 17th annual ACM
symposium on User interface software and technology
UIST '04, ACM, 2004, 13-22.

22. Kemp, A. and Gross, M.D., Gesture Modelling: Using
Video to Capture Freehand Modeling Commands. in
Computer Aided Architectural Design Futures 2001,
(Eindhoven, NL, 2001), Kluwer, 33-46.

23. Kim, J. Computers Are from Mars, Organisms Are from
Venus. IEEE Computer. 25-32.

24. Klemmer, S.R., Verplank, B. and Ju, W., Teaching
embodied interaction design practice. in Proceedings of
the 2005 conference on Designing for User eXperience,
(San Francisco, California, 2005), AIGA: American
Institute of Graphic Arts, Article 26.

25. Landay, J.A. and Myers, B.A. Sketching Interfaces:
Toward More Human Interface Design. IEEE
Computer, 34 (3). 56-64.

26. LaViola, J. and Zeleznik, R., Flex and Pinch: A Case
Study of Whole Hand Input Design for Virtual
Environment Interaction. in Proceedings of the Second
IASTED International Conference on Computer
Graphics and Imaging, (1999), 221-225.

27. Lee, J.C., Avrahami, D., Hudson, S.E., Forlizzi, J.,
Dietz, P.H. and Leigh, D., The calder toolkit: wired and
wireless components for rapidly prototyping interactive
devices. in Designing interactive systems: processes,
practices, methods, and techniques, (2004), ACM, 167 -
175

28. Lundgren, S., Torgersson, O., Hallnäs, L., Eriksson, E.
and Ljungstrand, P., Teaching Interaction Design:
Matters, Materials and Means. in DRS Wonderground
conference, (2006).

35

29. Mamykina, L., Candy, L. and Edmonds, E.
Collaborative creativity. Comm. ACM, 45 (10). 96-99.

30. Masry, M., Kang, D.J. and Lipson, H. A Pen-Based
Freehand Sketching Interface for Progressive
Construction of 3D Objects. Journal of Computers and
Graphics, 29 (Special Issue on Pen-Based User
Interfaces). 563-575.

31. Montemayor, J., Druin, A., Farber, A., Simms, S.,
Churaman, W. and D’Amour, A. Physical
Programming: Designing Tools For Children To Create
Physical Interactive Environments. in Proceedings of the
Conference on Human Computer Interaction, 2002,
299-305.

32. Papert, S. Mindstorms: Children, Computers, and
Powerful Ideas. Basic Books, New York, 1980.

33. Rand, P. Design and the Play Instinct. in Kepes, G. ed.
Education of Vision Braziller, New York, 1965, 154-
173.

34. Resnick, M., Martin, F., Berg, R., Borovoy, R., Colella,
V., Kramer, K. and Silverman, B., Digital
manipulatives: new toys to think with. in SIGCHI
conference on Human factors in computing systems,
(Los Angeles, California, United States, 1998), 281-287.

35. Rittel, H. and Webber, M.M. Dilemmas in a General
Theory of Planning. Policy Sciences, 4 (1973). 155-169.

36. Sato, K. and Verplank, W. Panel: teaching tangible
interaction design. in Proceedings of the conference on
Designing Interactive Systems: processes, practices,
methods, and techniques, ACM Press, New York City,
New York, United States, 2000, 444-445.

37. Schkolne, S., Pruett, M. and Schröder, P. Surface
drawing: creating organic 3D shapes with the hand and
tangible tools. in Conference on Human Factors in
Computing Systems (CHI '01), ACM, Seattle, 2001,
261-268.

38. Schön, D.A. Learning a Language, Learning to Design.
in Porter, W.L. and Kilbridge, M. eds. Architecture
Education Study, Andrew W. Mellon Foundation. New
York, 1981, 339 - 471.

39. Schön, D.A. The Design Studio. RIBA, London, 1985.
40. Schweikardt, E. and Gross, M.D. roBlocks: A Robotic

Construction Kit for Mathematics and Science
Education. in International Conference on Multimodal
Interaction, ACM, Banff, Alberta, 2006, 72-75.

41. Shaw, M., Herbsleb, J. and Ozkaya, I., Deciding what to
design: closing a gap in software engineering education.
in Proceedings of the 27th international conference on
Software engineering (ICSE), (2005), ACM, 607-608.

42. Simon, H. Sciences of the Artificial. MIT Press,
Cambridge, MA, 1969.

43. Stallman, R. My Lisp Experiences and the Development
of GNU Emacs, 2002. http://www.gnu.org/gnu/rms-
lisp.html

44. Tang, J.C. and Minneman, S.L., VideoWhiteboard:
Video Shadows to Support Remote Collaboration. in
CHI '91, (New Orleans, LA, 1991), ACM Press /
Addison Wesley, 315 - 322.

45. Tollmar, K. and Persson, J. Understanding remote
presence. in Proceedings Second Nordic Conference on
Human-computer interaction, 2002, 41-50.

46. Watanabe, R., Itoh, Y., Asai, M., Kitamura, Y., Kishino,
F. and Kikuchi, H. The Soul of ActiveCube -
Implementing a Flexible, Multimodal, Three-
Dimensional Spatial Tangible Interface. in Proc. of
ACM SIGCHI International Conference on Advanced
Computer Entertainment Technology ACE 2004, 2004,
173-180.

36

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

