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ABSTRACT 
We have, with our students, engaged in cross-disciplinary 
research in design. We describe parameters and principles 
that we have found helpful in organizing and conducting this 
kind of work. A variety of projects that have been developed 
in our group illustrate these parameters and principles. Our 
group focuses on making and we have come to see creativity 
as grounded in the ability to make things.  
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INTRODUCTION 
Everyone can be creative, because everyone has the ability to 
create or make things.  
Current interest in creativity stems at least in part from the 
realization that the traditional models of professional 
education may fall short in the changing economic context. 
Simply producing the most technically skilled mechanical or 
software engineers or architects no longer seems a sufficient 
strategy. A new kind of comprehensive education seems 
called for. Richard Florida in The Rise of the Creative Class 
[9], talks about "the three Ts" - talent, technology and 
tolerance. He observes that the trend of the economy and 
recipe for successful business is not big manufacturing, but 
instead a new type of knowledge-based, creative companies. 
These companies attract and retain smart people that bring 
“talents” to the table, invest in innovative “technology,” and 
welcome new people, ideas, and cultural diversity 
(“tolerance”). What are the ingredients of academic 
environments that can attract and nurture this kind of 
creativity? We have been working for a number of years at 
various universities to create this kind of environment. Here 

we reflect on this experience and some of the challenges, 
factors, tradeoffs that we have encountered.   

Making Things 
In keeping with our own disciplinary background — we 
were educated as architects and now teach in schools of 
architecture (at least notionally a creative field) — we begin 
with making things. Consider the Oxford English 
Dictionary’s definitions of two words: 
To create: 
1. Said of the divine agent: To bring into being, cause to 

exist; esp. to produce where nothing was before, ‘to 
form out of nothing’  

2. To make, form, constitute, or bring into legal existence 
(an institution, condition, action, mental product, or 
form, not existing before). 

 
To make: 
1. To produce (a material thing) by combination of parts, 

or by giving a certain form to a portion of matter, to 
manufacture; to construct, assemble, frame, fashion. 

2. Of God (also of Nature personified, etc.): to create (a 
material or spiritual object). 

 “Create” is a word of Latin derivation, and “Make” is a 
northern one, but both mean much the same thing. Create has 
stronger divine connotations, whereas make is humbler1. 
Creativity, in other words, is simply the propensity or ability 
to make things. The things may be physical, such as jewelry 
or bicycles, or they may be things that have no material 
presence, such as songs, poems, or software. These domains 
seem radically diverse, but based on our experience in 
making different kinds of things we have come to believe 
that there are strong commonalities between being creative in 
different domains. However, it is difficult to see these 
commonalities unless one has experience with making in at 
least two different domains. 
We see creativity not as an innate ability, but as a capacity 
that can be cultivated through experience making things. 
Making can be learned, largely through practice, which is the 

                                                           
1 Use Visual Wordnet to compare “create” and “make” for 

an interesting perspective on their noble and humble 
connotations: 
http://kylescholz.com/projects/wordnet/ 
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dominant mode in schools of art and design. In our design 
computing studio-laboratories we have emphasized a strategy 
of exploration by making things. 

Materials and processes  
If, as we argue, creativity is bound up in making things, then 
we must look at how people learn to make things, and how 
they learn to make things well. A look at a design school 
curriculum, the Bauhaus foundation courses for an historical 
example, or any contemporary school of architecture or 
industrial design, reveals an emphasis on materials and 
process.  
A potter must know clays and glazes and the various 
processes by which clays and glazes are prepared, formed, 
and fired. A clothing designer must know fabrics and 
fasteners, and the various processes for sizing, cutting, and 
sewing.  
The need to know materials and processes holds not only for 
traditional domains of making. The same applies to software 
and software-intensive systems. A programmer must know 
hardware and software and the processes by which code can 
be designed, written, debugged, and maintained. Knowledge 
of materials and processes — obtained through direct 
experience — is fundamental to the ability to make things in 
any domain.  

Space and the Studio-Laboratory 
We have worked primarily, though not exclusively, with 
students who are studying or have studied architectural 
design: undergraduates, professional master students, and 
PhD students in design computing. These students (and 
indeed all students in design disciplines) are accustomed to 
the studio model of learning and practice, described by Don 
Schön in The Design Studio [39]. (Schön’s work on what he 
aptly named “the reflective practitioner” expands on his 
observations of architectural education in a Mellon 
Foundation study [38].) The design studio and the research 
laboratory both depend on a common space in which work 
takes place and is visible for informal discussion and open 
critique. A shared space for work is, we believe, a basic 
ingredient of a creative community. Although this 
observation may seem obvious to those familiar with this 
pattern, it is not a universal model in the university. For 
example, the lab model is virtually unknown in the 
humanities [15]. 
Below, we review some projects that we have worked on 
over the past few years. We do this to reflect on the creative 
communities we have fostered at universities where we have 
worked. We have never explicitly described our research 
practice as a curiosity-based designer-as-maker approach, but 
we engage problem solving and problem seeking to 
encourage people to see no boundaries between fields. We 
encourage exploration by constructing (interface, 
interactions, software, and hardware) as a process that 
creates, in Seymour Papert’s phrase, “objects to think with” 
[32]. This approach is embedded deeply in the design studio 
culture. We set up an environment to encourage and nurture 

creative mindsets and approaches. Specifically, we 
encourage the process of generating ideas and building 
prototypes through incremental refinement. 
All design involves a developmental process. The design 
ideas and eventually the artifacts that stand for the ideas (the 
prototypes) move from one developmental stage to the next. 
The process is driven by the conditions of the environment. 
Usually, a project remains in a particular stage until some 
other conditions happen to push us to move it to the next 
stage. At other times we don’t seem to be moving to the next 
stage, but later we realize that we were in an incubation stage 
that absorbs and responds to the changes and integrates them. 
So what are the “driving forces” that we engage in our 
creative laboratory practice?  

The Creative Team versus the Leonardo Model  
One successful model for creative communities is to foster 
team-building among people who have different abilities, and 
some have studied how such team-building can happen [29]. 
For example, an artist and a programmer might work 
together on the design of a game. The artist is not expected to 
be a programmer, and the programmer is not expected to 
function as an artist. Rather, each member of the “creative 
team” functions as an expert in his or her domain; and the 
team learns to function together effectively by dividing 
responsibilities according to expertise. 
Rather we favor what one might call the Leonardo model. 
We encourage individuals to transgress traditional 
disciplinary boundaries and learn to function in whatever 
fields of knowledge they need to accomplish their goals. In 
this model an artist who has an idea for a game would simply 
build the game, learning (or having already learned) to 
program along the way.  
True, most people find mastering even one discipline to be a 
serious challenge, and only an occasional outlier will master 
two or more disciplines. Not to understate the work involved, 
but with motivation and access to knowledge, designers can 
acquire skills to function effectively in two or more quite 
different fields. Indeed, for some, knowledge of designing 
within one discipline can support rapid and sophisticated 
acquisition of knowledge in another. 
If working across disciplinary boundaries holds creative 
riches, it is also certainly not without its challenges. In an 
article on the emerging field of computational biology, 
Junhyong Kim [23] makes trenchant observations on the 
nature and challenges of interdisciplinary research 
collaboration: 

“While combining the knowledge of two different 
fields can be difficult, we can overcome such 
problems if we work hard and do our homework. 
There is absolutely no reason why an expert in 
biological sciences should not also be deeply 
knowledgeable in computer science, mathematics, 
and statistics…..  
Specifically, when two experts get together, they 
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expect each other to stay within their own domains 
and communicate solely through some narrowly 
prescribed interface. 
 … To make interdisciplinary research successful, 
we must jettison this idea of the expert. All 
knowledge is equal. Indeed, if we really knew which 
knowledge is important and which is not, we could 
all use it with shared certainty. Growth of 
knowledge, whether personal or fieldwide, is 
haphazard and full of windings and intricate 
turnings.” 

Everyone cannot know everything; tradeoffs must be 
made. Yet there is value in learning how “other” 
disciplines work, not just from the perspective of how to 
collaborate with others, but to understand and see 
designing from within more than one domain.  

Hill-finding and Hill-climbing  
We aim to build prototypes that extend the dimensions of a 
design space, rather than optimize within existing design 
space dimensions. This makes it difficult to make useful 
comparisons with other designs that serve the same function 
or perform a similar task. On the other hand, without 
evaluation it is difficult to judge the quality of the work that 
has been done.  
One of our students, Gabe Johnson, put it like this;  

One perspective is that when we build a novel tool, 
we will have some idea about how it might be used 
and how it could help, but not well enough to form a 
detailed evaluation plan before building it. We have 
to build it before we know which questions are 
appropriate to ask and evaluate. This isn't hill 
climbing, this is hill finding. 
An opposing perspective holds that we shouldn't 
build tools without having a prescient knowledge of 
how that tool fits into the landscape of existing tools, 
and exactly what specific benefit we believe we can 
derive from that tool. This is the standard scientific 
approach of hypothesis - experiment - analysis 
(repeat). In other words, this is hill climbing. 

PROJECTS 
We organize the projects below into three categories to 
discuss the process and dimensions of the projects in our 
creative communities. All are about “making things”, 
building computationally enhanced artifacts that are objects 
to think with, to play with, to contemplate ideas about design. 
Three patterns of promoting creative engagements emerge: 
(1) owning the problem, (2) design and the play instinct, and 
(3) building tools to make things. 

Related Work (Projects) 
We are well aware of much related work for the various 
student projects. For example, systems similar to Gesture 
Modeling include Surface Drawing [37] and Pinch Glove 
[26]. Related to the Immersive Redliner, early work on 

annotation in virtual reality is reported in [3]. Telepresence 
has been extensively explored by Tang and Minneman [44] 
and others [45]. Tangible music toys are numerous, for 
example Sony’s Block Jam; see also [16] and the work of 
Eisenberg, Resnick and colleagues [8, 34]. Like Easigami, 
Ju’s Origami Desk [19] supported origami learning with a 
physical interface. Related tangible storytelling work include 
work by Druin et al. [31]; there are indeed conferences 
devoted to interactive storytelling technology [11]. Pen based 
sketching systems to create 3D models, similar in intent to 
the Furniture Factory include work of Lipson and colleagues 
[30]; see also [6, 13, 18, 21, 25]. Tangible building blocks 
projects related to roBlocks include the early work of Aish 
[1] and more recently that of Anderson and Marks et al. at 
MERL and Watanabe’s work on ActiveCubes [2, 46]. 
Owning the Problem or Deciding What to Design 
In a traditional architectural design studio, work begins with 
a clearly defined problem statement, or “program” (e.g., a 
community library, a house for a working couple, or a train 
station). This way of working is appropriate where the goal is 
to teach and learn specific skills that every architect must 
know, such as arranging functions in a floor plan or deciding 
on a structural system to support the building. Nor do we 
mean to belittle the importance of learning to design things 
for others. The drawback—from the more general 
perspective of learning to make things— is that being given a 
ready-made problem avoids the framing question of 
“deciding what to design” [41]. Importantly, also many find 
it more difficult to take ownership of a problem that someone 
else has prepared.  
Therefore we encourage our students to define their own 
problem statements—figuring out the “wants”. For example, 
one might be frustrated with existing technology or practice 
and have a want for something better. Or, these wants can 
come from personal experience, the desire to live a smarter, 
more efficient, or happier life. Having wants ensures that 
there is a desire or passion for something to happen. This 
motivates people to engage in just-in-time learning to 
achieve their project goals. The process begins with the 
egocentric (“I want … ”) and moves toward to a more shared 
vision of the benefits of a project (“we get …”). As 
Buchanan [5] points out, the old design education focuses on 
“teaching the materials, tools, and techniques of design as the 
primary subject matter,” the new course “focuses on projects 
and problems that are situated within the experience and 
motivation of students.” He argues that- “having a reason to 
design gives focus and purpose to student development. 
When a purpose exists, we find it easier then to introduce 
materials, tools, and techniques.” 
Our “own the problem” approach might seem unorthodox—
at least among colleagues in Human-Computer Interaction 
and Design—in that we do not begin with a user-centered 
approach, conducting ethnographic studies, cultural probes, 
or other means to identify and understand the dimensions of 
a problem to be solved. Rather, we draw on personal 
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experience and personal needs as a primary source for 
creative exploration into the design space.  
Many innovations come about because the inventor solves a 
problem for him or herself. Stallman, for example, built 
emacs because he wanted a better text editor [43]. He knew 
the problem well — it was his problem —so he did not need 
to conduct surveys or observations to understand the client or 
the context.  
Paul Graham puts it like this: 

You're most likely to get good design if the intended 
users include the designer himself. When you design 
something for a group that doesn't include you, it 
tends to be for people you consider to be less 
sophisticated than you, not more sophisticated. 
That's a problem, because looking down on the user, 
however benevolently, seems inevitably to corrupt the 
designer. I suspect that very few housing projects in 
the US were designed by architects who expected to 
live in them. [12] 

Graham is certainly right about the architects.  
 

Gesture Modeling 
Our Gesture Modeling project [22] began with a frustration 
with using WIMP interfaces to create architectural form. (“I 
want to gesture and shape spaces"). Ariel Kemp, an 
architecture graduate student with a bachelor degree in 
computer science, wanted instead to use his hands to 
generate three-dimensional form, to design with computers 
as freely as one could in making sculpture out of clay. Ariel 
had previously written some image processing code that he 
used in the Gesture Modeling project to recognize different 
hand gestures, and connected this code to a 3-D geometry 
engine and linked the gestures to different form-making and 
editing operations.   

 
Figure 1. Deforming a mesh model with a hand gesture. 
 

Immersive Redliner 
The Immersive Redliner project [20] came from the need to 
collaborate with other stakeholders on design artifacts. (I 
need a way for my clients to give feedback). Thomas Jung, 
an architecture graduate student, understood that need. He 
felt that designing in the medium of CAD tended to isolate, 
rather than bring together, the various stakeholders, and he 
wanted to support a conversation among stakeholders about 
the artifact being designed. In order to realize this goal he 

learned to program in Java and mastered the intricacies of the 
Java3D graphics environment. The Redliner software offered 
stakeholders a desktop virtual reality model in which they 
could browse a 3D model on the Web and post annotations 
about particular features on objects in the design. 
 

 
Figure 2. Redliner Annotations by stakeholders in an interior 
design  
 

Telepresence Tables 
Telepresence Tables are an instance of calm technology that 
provides one person an ambient awareness of others while 
protecting privacy. (“I want to stay connected with my 
friends and family while maintaining my privacy.”) 
Originally a project in a “Home of the Future” class we 
taught, the Telepresence Tables are two small tables outfitted 
with electronics so that shadow patterns made on one table 
appear in colored light on the other. Each table has an 8x8 
array of light sensors and two colors of LEDs that project 
upward to make patterns on a frosted plastic surface. A 
microcontroller in each table collects the light sensor values, 
echoes them locally by lighting yellow LEDs, and sends the 
data to the other table, which displays the remote shadow 
pattern by lighting the red LEDs. People find the light 
patterns beautiful and the experience engaging. 
 

 
Figure 3. Each Telepresence Table translates shadow 
patterns into light and transmits them to the other table. 
 
The Telepresence Tables were built over two months by a 
team of four: Ken Camarata and Mike Weller, two PhD 
students in computational design, Kursat Ozenc, a PhD 
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student in interaction design, and Bridget Lewis, an 
undergraduate physics major. The team started by 
brainstorming around the idea of ambient awareness with 
privacy, and moved rapidly to tangible interaction embedded 
in furniture. The team developed several alternatives quickly, 
and selected the grid of photosensors and LEDs. Over the 
course of the first few weeks the team together worked out 
the electronics and software design, learning basic circuit 
design and fabrication as they went. A shared workspace and 
a (persistent) whiteboard supported their design discussions 
and served as informal communication between team 
members. The design underwent continual refinement as the 
team built small prototypes to test various aspects. The team 
made up for their collective lack of experience in analog 
electronics by opportunistically taking advantage of 
resources. For example, rather than send boards out to be 
fabricated (which no one on the team knew how to do) they 
opted for using a computer-numerically controlled mill to 
mill circuit paths in copper plated boards. 

 
Tinkering, design, and the play instinct 
The second pattern in our projects is the importance of play. 
The late American graphic designer Paul Rand described 
designing as a kind of play within given or self-imposed 
constraints [33]. Play – an exploration of materials and 
processes — is what distinguishes routine acts of making, 
that is to say production, from more creative acts of making 
that may result in innovative ideas.  
Papert [32] used the French word bricolage, or what 
computer scientists and artificial intelligence researchers 
called “hacking” goes to the heart of what creative people do, 
and people who aspire to being creative must practice.    
This sort of creative play is encouraged in schools of design 
(which include architecture, industrial, communication and 
interaction design) and the arts (including music, painting, 
sculpture, and drama). Students learn to make things by 
making things.  
Despite some advantages, hacking, tinkering, and playful 
exploration are often disparaged. These activities are seen as 
not sufficiently goal-oriented: A good engineer, it is said, 
begins with a clearly articulated problem statement, and then 
applies reliable methods to reach a solution. A student who 
spends time playing around with things is wasting time that 
could be more profitably spent applying known methods to 
the problem at hand. And inevitably there will be failures — 
as actually building a prototype reveals unanticipated 
behaviors that undermine a previously plausible design idea. 
Getting the plan right in the first place would avoid wasted 
time and costly mistakes. 
The difficulty with this position is, of course, that creative 
work, particularly design work, seldom begins with a clearly 
stated problem. Rather, as many have pointed out [35, 39, 
42], design is as much concerned with identifying and 
expressing a problem as it is finding solutions. Adages such 
as “Defining the problem is the problem” and “The problem 

and solution co-evolve” exemplify this well-known 
characteristic of designing.  
 

Bach Blocks – playing with music 
Shaun Moon’s Bach Blocks are a set of colored blocks, a 
camera, and some software that reads the arrangement of 
blocks and plays a tune. Shaun, a graduate student with a 
background in architectural design, wanted to play with 
music, and wanted in particular to build a toy that could 
engage his young children with music. 
Colors represent pitches and the positions of the blocks 
determine the sequence of play. Thus, Bach Blocks is at once 
an instrument for making music and a notation to compose it. 
Ordinarily the software plays from left to right (and blocks 
arranged vertically play harmonies), but Bach Blocks 
software can also be set to play the tune in any direction.  
 

 
Figure 4 Bach Blocks: making and playing music with 
colored blocks 
 

Easigami – playing with origami 
Playing with origami, children learn geometry and spatial 
reasoning skills. However, children often find it difficult to 
interpret diagrams in a book into origami action. The 
traditional way of teaching origami discourages children 
from creating original paper models. It cannot reveal the rich 
content in the transformation between a 3D model and its 2D 
crease pattern. Easigami is a tangible user interface that 
addresses these issues. It uses computer interaction to clarify 
origami actions and to encourage origami exploration 
through 2D-3D transformation.  

 
Figure 5. Easigami senses a user’s folding pattern. 
 
Easigami’s physical interface is a paper-like triangle tile toy 
composed of flat triangle pieces and electrically enhanced 
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hinges. The hinges join plastic triangles to form a flat sheet 
with a crease pattern. Each hinge can provide folding 
instructions by illuminating LEDs to indicate which crease(s) 
are active as well as the direction to fold. Each hinge senses 
the relationship between the two adjacent triangles it 
connects, and sends the angular information to a desktop 
computer. Users can follow instructional signals and fold the 
Easigami interface along pre-folded creases. A real-time 
computer graphic model of the physical triangles is displayed 
on screen along with the corresponding 2D crease pattern.  
Easigami was built by Yingdan Huang, a PhD student who 
had an undergraduate degree in architecture and had taken 
advanced courses in programming and computer graphics. 
Easigami was her first tangible media project, and she had no 
experience with wiring up analog electronics or 
microcontroller programming. However, she was able to 
quickly produce alternative physical designs for embedding 
electronic components in a physical model, and develop a 
hierarchy browser that enables Easigami users to see where 
the current state of the folded sheet is in the space of possible 
origami designs. She was also able to quickly build an Open-
GL 3-D viewer that dynamically displays the model as the 
user folds it, although she was stymied for some time by the 
realization that accurately modeling paper folding, notably 
the transient states in which paper is flexed into complex 
curved surfaces, is a non-trivial problem. With some effort 
we were able to convince Yingdan that an approximate 
simulation would be an adequate representation. 
 

Storytelling Cubes – building animations tangibly 
Storytelling Cubes are a tangible device for young children 
to create animated stories on a computer screen. Each cube 
contains an orientation sensor (three mercury switches) and a 
wireless transmitter that tells the host computer which side of 
each cube is facing up. The faces of cubes depict various 
characters, scenes, and actions in an animated cartoon. 
Children use the Storytelling Cubes to illustrate their spoken 
stories in a create-your-own-adventure fashion. Tony Sheng-
Kai Tang, an architecture PhD student, interfaced the 
Storytelling Cubes with the Alice graphical programming 
environment developed by Randy Pausch’s group at CMU to 
enable children to use the Storytelling Cubes to generate 
animated cartoon stories. 
 

 
Figure 6. Making animations with Storytelling Cubes 

Building Tools to Make Things 
The third pattern in our projects is a tool-building approach. 
We are less interested in making particular designs for a 
particular client or user, than in developing ways of working 
— methods and tools— that can open up new design spaces. 
We mention briefly two projects that illustrate that approach: 
Furniture Factory and roBlocks. 
 

Furniture Factory -- Sketch to fabrication 
The Furniture Factory program helps designers make 
physical prototypes using rapid prototyping and 
manufacturing machines. It provides a sketch-based design 
interface that a designer can use to draw furniture in 3-D. 
The program then displays the model in an isometric viewing 
window where the designer can view it and edit it. It then 
decomposes the 3-D model into flat panels and displays them 
in the parts window. Furniture Factory adds joints where one 
panel connects to another according to connection 
conditions. These added joints enable designers to construct 
the physical model easily and quickly. The program 
generates HPGL code to cut the furniture parts on a laser 
cutter.  

 
Figure 7. Sketch to Fabrication with the Furniture Factory 
 
Furniture Factory is designed specifically to produce a 
simple subset of the universe of things that can be made from 
flat material. We are working on a generalization of the 
program that will allow a designer to sketch and manufacture 
a wider variety of things, based on a larger language of form 
that includes folding, laminating, assembling, and cutting flat 
materials.  
 

roBlocks – a Robot Construction Kit 
The roBlocks construction kit [40], built by Eric 
Schweikardt, a PhD student with an undergraduate major in 
architecture and a minor in computer science, is a set of 40 
mm plastic cubes that snap together using small neodymium 
magnets in their faces. Each block contains a microprocessor 
and custom circuit boards that are glued with conductive 
epoxy to the face magnets. Power, as well as data, is 
transmitted from one block to the next through the magnets 
and a small spring pins also mounted on each face. Some 
blocks are input blocks: they have light, sound, touch, or 
other sensors. Others output: they have motors, lights, or 
speakers. Still others are logic or arithmetic blocks that 
combine signals from the sensor blocks.  
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The idea of roBlocks is that designers who have no previous 
experience with electronics, mechanical design, or 
programming can assemble the components of a robot by 
making a block construction.  The configuration itself also 
programs the robot’s behavior, so (conceptually), a light 
sensor block snapped to a motor block will be a robot that 
moves toward light; adding a NOT block between them 
produces a robot that avoids light. 

 
Figure 8. roBlocks construction kit for modular robotics 
 

DISCUSSION 
For various reasons the kind of environment we foster—an 
interdisciplinary, no-boundaries, technically sophisticated 
studio-laboratory—is still unusual in the university. Certainly 
we are not alone: Pelle Ehn articulates a similar vision for a 
Digital Bauhaus at Malmö University [7]; Stanford’s “d-
school”, the  ID-StudioLab at Delft, the MIT Media Lab, and 
others are ventures in the same vein. Within the design 
disciplines, and especially industrial and interaction design 
there is a growing interest in hybrid models of education [24, 
28, 36]. Still we find that the model runs against the grain of 
the university, which tends to reward focus within, rather 
than across, disciplines.   
We recognize the irony in our emphasis on making as a 
means to creativity just as Western economies are less and 
less about making things. Can we learn creativity through 
making, yet apply it to other (non-making) domains?  

Education of Designers vs. that of Engineers  
Architects and designers are educated in a quite different 
fashion than scientists and engineers. Architects in particular 
are integrators and therefore negotiators among a set of 
diverse other experts. Like designers in other disciplines, 
architects are taught to keep options open, explore parallel 
alternatives, celebrate ambiguity. Engineers tend to be more 
goal-oriented and stay within their field of expertise and treat 
ambiguity as something to be eliminated. 
Thus we find that it is easier for design students to learn 
technical skills (programming, electronics) they need to carry 
out projects in design computing than it is to teach 
engineering and computer science students to work in ill-
defined situations.  
Engineering and computer science students tend to be less 
well prepared for open-ended investigation than those who 
have studied design. Engineering and computer science 
students with whom we have worked are happiest when we 

present them with a specification of work to be 
accomplished. An open-ended brief tends to make them 
uncomfortable—they do not know where to begin or how to 
proceed. Once we give them a clear objective they can apply 
the skills that they have acquired to attain it. Design students, 
in contrast, even when given a clear specification, will ignore 
it and do something else!  
Although it is possible that becoming expert in technical 
domains is simply easier than learning to design, we suppose 
that other factors are responsible for this phenomenon. One is 
cultural arrogance: due to a perceived ‘pecking order’ in the 
university, computer science and engineering students do not 
recognize that there is an important skill that they do not 
know. Indeed, their education is intended to prepare them to 
walk up to any new problem and apply their bag of tricks to 
it.  
In our experience a computer science student or an 
engineering student is more likely to jump from an initial 
statement of a problem to propose a method of solving it, and 
then immediately pursue that approach without considering 
alternatives. Generating and comparing alternatives is an 
activity that is drummed into designers throughout their 
education.  
There is also the matter of being able to accomplish 
something. It is usually possible for a student of computer 
science or engineering who knows how to write code to 
make something—however poorly designed or inelegant—
without having first learned the skills of designing. On the 
other hand, a design student who sets out to make an artifact 
that has software or hardware must — perforce — learn 
some technical skills.  
Of course, there are problems going the other way as well. 
Not every designer finds computation a natural medium. 
Students from a design background are sometimes 
overwhelmed by the amount of technical detail that they 
must master in order to do anything interesting. Those who 
start to learn to program by taking courses in the computer 
science department are often bored by the examples used in 
problem sets (which have no relationship to anything they 
might be interested in) and on the other hand surprised by the 
precision that is demanded to make a working piece of 
software. Other students view programming as a way to get 
something done — “by any means necessary,” and failing to 
recognize the power of good design in software, produce 
horrible kludges that work (perhaps) for a key example or 
two but in the end limit any further exploration that can be 
done with the prototype.  

Designing and Programming  
If creativity is about making things, and making things is 
about design, what is the place of programming in all this? 
Many who have worked both as a programmer and in some 
other domain of design recognize powerful parallels.  
Consider the words of master programmer Dick Gabriel in 
“the Poetry of Programming.” In 2004 Gabriel received the 
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AAAI/ACM Allen Newell Award “for innovations not only 
on fundamental issues in programming languages and 
software design but also on the interaction between computer 
science and other disciplines, notably architecture and 
poetry.” In an interview titled “The Poetry of Programming”, 
Gabriel said: 

Writing code certainly feels very similar to 
writing poetry. When I'm writing poetry, it feels 
like the center of my thinking is in a particular 
place, and when I'm writing code the center of 
my thinking feels in the same kind of place. It's 
the same kind of concentration. So, I'm thinking 
up possibilities, I'm thinking about, well, so how 
do I reinvent the code, gee, you know, what's the 
simplest way to do this. [10] 

Or Paul Graham again: “Hacking and painting have a lot in 
common. In fact, of all the different types of people I've 
known, hackers and painters are among the most alike. What 
hackers and painters have in common is that they're both 
makers. Along with composers, architects, and writers, what 
hackers and painters are trying to do is make good 
things.”[12] 

de.sign = pro.gram 
Martin Brynskov at the Center for Interactive Spaces at the 
University of Aarhus [4] pointed out that the words design 
and program are remarkably close in their Greek and Latin 
roots. According to the Oxford English Dictionary the word 
“design” is made from the prefix “de-” (meaning out) and the 
root “sign” (meaning mark) that is, to mark out. Likewise, 
the word “program” is made from the prefix “pro-“ (meaning 
forward or out), and ‘gram” (meaning writing). That is, both 
design and program mean to mark out or make an explicit 
representation.   

Emphasis on Prototypes 
We emphasize the value of building working prototypes of 
ideas—quickly and focusing on the parts of an idea that are 
interesting or that seem worth exploring. In traditional design 
education, prototypes are physical models that illustrate the 
form, and perhaps the materials, of the design to be made. As 
computation is added to the mix, it becomes more difficult 
for traditionally trained designers to make working 
prototypes that illustrate not only the physical and material 
characteristics of designs but also their functional behavior. 
Software environments like Flash are frequently used to 
mock up interaction, but Flash is a poor language to build or 
even model more sophisticated computational behavior. As 
designers grapple with making things that have both physical 
and computational characteristics, the need becomes 
apparent for prototyping tools that can capture and convey 
not only the superficial aspects of a design, but also carry the 
more fundamental ones. Work on toolkits and design 
environments for physically embedded computation—as in 
[14, 17, 27] can make this kind of work far more accessible. 

The New Makers 
If as Richard Florida and others argue, creativity is crucial in 
the new economy, then perhaps we can foster creativity by 
putting making back into education.  There is nothing new 
about that idea, but for a variety of reasons, some outlined in 
Dick Buchanan’s “Design and the New Learning” [5] 
learning to make things has become conspicuously absent in 
most courses of higher education. One might expect schools 
of engineering to teach students to make things, but 
engineering curricula are strong on teaching analysis and 
principles and light on the actual practice of making. 
Certainly, making things is still taught in two places in the 
university: schools of design and the arts, and departments of 
computer science. Surprisingly, as the field of computer 
science matures, the skills of making software are being 
systematically displaced by more analytic skills. In short, as 
it matures as a discipline, computer science seems to be 
moving away from teaching design, just as other engineering 
disciplines such as mechanical or civil engineering did in 
their earlier days.  
Now is an interesting moment. Things have changed, and the 
ways of making things have changed too. Almost everything 
in our world is the product of design. Increasingly designing 
is mediated by computational processes. Increasingly the 
artifacts that we encounter —our shoes, our houses, even our 
parks, are embedded with microcontrollers, sensors, and 
electronics. Designers of the future—the New Makers—will 
need to be fluent with the materials and processes of 
computation, in addition to the materials and processes of 
other domains.  
We believe that powerful insights are available to those 
designers—who come initially from whatever discipline—
who master the art and craft of making things in more than 
one domain. These insights may eventually further the 
development of what Simon termed a “Science of Design” 
[42]. Meanwhile, we hold that creativity is rooted in the 
experience of making things. 
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